نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
335 نتائج ل "Rosaceae - chemistry"
صنف حسب:
Bioactive Compounds and Antioxidant Activity in Different Types of Berries
Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.
Descriptive study of plant resources in the context of the ethnomedicinal relevance of indigenous flora: A case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan
This paper presents the first quantitative ethnobotanical study of the flora in Toli Peer National Park of Azad Jammu and Kashmir, Pakistan. Being a remote area, there is a strong dependence by local people on ethnobotanical practices. Thus, we attempted to record the folk uses of the native plants of the area with a view to acknowledging and documenting the ethnobotanical knowledge. The aims of the study were to compile an inventory of the medicinal plants in the study area and to record the methods by which herbal drugs were prepared and administered. Information on the therapeutic properties of medicinal plants was collected from 64 local inhabitants and herbalists using open ended and semi-structured questionnaires over the period Aug 2013-Jul 2014. The data were recorded into a synoptic table comprising an ethnobotanical inventory of plants, the parts used, therapeutic indications and modes of application or administration. Different ethnobotanical indices i.e. relative frequencies of citation (RFC), relative importance (RI), use value (UV) and informant consensus factor (Fic), were calculated for each of the recorded medicinal plants. In addition, a correlation analysis was performed using SPSS ver. 16 to check the level of association between use value and relative frequency of citation. A total of 121 species of medicinal plants belonging to 57 families and 98 genera were recorded. The study area was dominated by herbaceous species (48%) with leaves (41%) as the most exploited plant part. The Lamiaceae and Rosaceae (9% each) were the dominant families in the study area. Among different methods of preparation, the most frequently used method was decoction (26 species) of different plant parts followed by use as juice and powder (24 species each), paste (22 species), chewing (16 species), extract (11 species), infusion (10 species) and poultice (8 species). The maximum Informant consensus factor (Fic) value was for gastro-intestinal, parasitic and hepatobiliary complaints (0.90). Berberis lycium Ajuga bracteosa, Prunella vulgaris, Adiantum capillus-veneris, Desmodium polycarpum, Pinus roxburgii, Albizia lebbeck, Cedrella serrata, Rosa brunonii, Punica granatum, Jasminum mesnyi and Zanthoxylum armatum were the most valuable plants with the highest UV, RFC and relative importance values. The Pearson correlation coefficient between UV and RFC (0.881) reflects a significant positive correlation between the use value and relative frequency of citation. The coefficient of determination indicated that 77% of the variability in UV could be explained in terms of RFC. Systematic documentation of the medicinal plants in the Toli Peer National Park shows that the area is rich in plants with ethnomedicinal value and that the inhabitants of the area have significant knowledge about the use of such plants with herbal drugs commonly used to cure infirmities. The results of this study indicate that carrying out subsequent pharmacological and phytochemical investigations in this part of Pakistan could lead to new drug discoveries.
Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland
The basic chemical composition, bioactive compounds, and antioxidant capacity of fruits of three new Polish breeding clones (No. 5/6, type S, and type N) and four Canadian cultivars (cvs.) (\"Martin\", \"Smoky\", \"Pembina\", and \"Honeywood\") grown in Poland in 2016 were investigated. Fruits were analyzed for their contents of triterpenoids, carotenoids, chlorophylls, and polyphenolics with the ultra-performance liquid chromatography photodiode detector-quadrupole/time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS) method, sugar with the high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method, and antioxidant capacity with the ability to reduce free radical (ABTS) and ferric reducing ability of plasma (FRAP) method. Thirty-eight bioactive compounds, including twenty-eight polyphenolic compounds (four anthocyanins, nine phenolic acids, nine flavonols, and seven flavan-3-ols), four carotenoids, two chlorophylls, and three triterpenoids were identified in the fruits. The fruits of the tested Saskatoon berry genotypes were found to be rich in phenolic compounds (3773.94-6390.36 mg/100 g·dm), triterpenoids (66.55-91.31 mg/kg·dm), and carotenoids (478.62-561.57 mg/kg·dm), with high ABTS and FRAP capacity (10.38-34.49 and 9.66-25.34 mmol·Trolox/100 g·dm, respectively). Additionally, the berries of these genotypes seemed to be a good source of sugar (9.02-19.69 g/100 g), pectins (0.67%-1.33%), and ash (0.59%-0.67%). Some genotypes of Saskatoon berry, especially the clones type S, type N, and cvs. \"Honeywood\" and \"Smoky\", may be selected for their potential applications in commercial cultivation to produce fruits with valuable health-promoting nutritional effects on human health. Additionally, three new genotypes that may offer new functional materials can be recommended for fruit growers.
Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): a potential source for functional food ingredients and drug formulations
This study was focused on the analysis of the phenolic content, antioxidant, antibacterial, anti-cholinesterase, anti-tyrosinase, anti-amylase and anti-glucosidase activity of three solvent extracts from Cotoneaster nummularia. Moreover, water extract was tested in terms of mutagenic/anti-mutagenic effects. The antioxidant activities of these extracts were evaluated by DPPH, ABTS, O2, metal chelating, phosphomolybdenum, β-carotene/linoleic acid, ferric and cupric reducing power assays. Enzyme inhibitory activities were also examined with colorimetric methods. Generally, methanol and water extracts exhibited excellent biological activities. These extracts were rich in phenolic and flavonoid content. Furthermore, Cotoneaster extracts indicated appreciable antibacterial properties against human pathogen strains. HPLC analysis showed that ferulic acid, chlorogenic acid, (-) - epicatechin and (+)-catechin were the major phenolics in extracts tested. These data offer that these extracts from C. nummularia may be considered as a potential source of biological agents for developing functional foods or drug formulations.
Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince
This paper presents characterization of healthy potential new sources of functional constituents with reference to basic plant sources. In this study, the phenolics, triterpene, isoprenoids (chlorophylls and carotenoids), amino acids, minerals, sugars and organic acids of different cultivars of pome species-apple, pear, quince-leaves vs. fruits and their enzymatic in vitro enzyme inhibition of hyperglycemic (α-glucosidase, α-amylase), obesity (pancreatic lipase), cholinesterase (acetylcholinesterase, butylcholinesterase), inflammatory (15-LOX, COX-1 and -2) and antioxidant capacity (ORAC, FRAP, ABTS) were evaluated. Leaves of pome species as a new plant sources were characterized by higher content of bioactive and nutritional compounds than basic fruits. The dominant fraction for quince, pear, and apple fruits was polymeric procyanidins. In quince and pear leaves flavan-3-ols, and in apple dihydrochalcones dominated. Triterpene was present in equal content in leaves and fruits. Leaves are excellent sources of amino acids and minerals (especially Ca, Mg, Fe, and K), with high content of organic acids and low content of sugars compared to fruits of pome species. Leaves of apples and pears most effectively inhibited COX-1, COX-2, α-amylase, and α-glucosidase enzyme but quince leaves showed the most effective inhibition of pancreatic lipase, AChE and BuChE, 15-LOX, and antioxidant capacity, which particularly correlated with bioactive compounds. Present study shows that leaves are promising sources of valuable compounds and may be used to produce functional foods as well as for medical purposes.
Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species
Cell cultures originating from 12 different plant species growing or grown in the Nordic countries were screened for their ability to synthesize polyphenols to assess their suitability for future studies and applications. The focus was on plant families Rosaceae and Ericaceae. On average, the Rosaceae cultures were the most efficient to produce hydrolysable tannins and the Ericaceae cultures were the most efficient to produce proanthocyanidins. This is in line with the general trend of polyphenols found in Rosaceae and Ericaceae leaves and fruits, even though several individual cell cultures differed from natural plants in their polyphenolic composition. Overall, several of the studied cell cultures exhibited capability in producing a large variety of polyphenols, including tannins with a high molecular weight, thus also showing promise for further studies concerning, for example, the accumulation of specific polyphenols or biosynthesis of polyphenols in the cell cultures.
Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics
Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects. These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections.
Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts
Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of , , , and as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of , whereas kaempferol glucoside and procyanidin A were present only in the pulp. In , catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of peel extract. Naringenin and hesperidin were found only in the pulp of . The most significant compositional variety between the peel and pulp extracts was observed for : Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. and peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of inhibited mushroom tyrosinase but activated the murine enzyme. pulp and peel extracts showed the highest in vitro SPF. , , and extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% ( ) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.
Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents
In this study, procyanidins fractions of dimers and trimers (F1-F2) from the total extract (LSTE) were investigated for their chemical constituents. The total extract and the procyanidins were employed in the synthesis of gold nanoparticles (Au NPs) and fully characterized. Au NPs of 6, 24 and 21 nm were obtained using LSTE, F1 and F2 respectively. Zeta potential and in vitro stability studies confirmed the stability of the particles. The enzymatic activity of LSTE, F1, F2 and their corresponding Au NPs showed strong inhibitory alpha-amylase activity where F1 Au NPs demonstrated the highest with IC of 1.88 µg/mL. On the other hand, F2 Au NPs displayed the strongest alpha-glucosidase activity at 4.5 µg/mL. F2 and F2 Au NPs also demonstrated the highest antioxidant activity, 1834.0 ± 4.7 μM AAE/g and 1521.9 ± 3.0 μM TE/g respectively. The study revealed not only the ability of procyanidins dimers (F1 and F2) in forming biostable and bioactive Au NPs but also, a significant enhancement of the natural products activities, which could improve the smart delivery in future biomedical applications.
Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits
Chinese hawthorn (Crataegus pinnatifida Bge.) fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid)--active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.